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Sims and Zha

Sims and Zha describe a procedure for estimating error bands for overidentified structural

VAR’s. The MC integration procedures widely used for computing error bands for

impulse response functions aren’t justified (in small samples) when applied to

overidentified structural VAR’s; that is, you can’t draw a covariance matrix from an

unrestricted distribution and then restrict it to a subspace.

Basic Idea: (Dates back to a footnote in Kloek and Van Dijk 1978 Econometrica 1978)

Take the asymptotic Normal distribution obtained from computing the posterior mode

(ML estimates if using a flat prior), and use that as the importance density. This relatively

simple procedure was (apparently) unsuccessful in this case. SZ instead used a complex

Metropolis-Gibbs sampling scheme. I’ll argue that (a) the problems stem from the

behavior of this particular model and (b) even then, the simpler importance sampling

procedure could have been made to work.

Importance sampling: choose a density g with convenient MC properties and compute the

expectation of h using

( ( ))fE h x ( ) ( )h x f x dx= ∫

( )( ) ( ) ( ) ( )h x f x g x g x dx= ∫

( )gE hf g=

In practice, we only work with the kernels *f  and *g  for the two densities, so the

expected value is estimated by ˆ ( ) ( ) ( )i i ih h x w x w x= ∑ ∑  where * *( ) ( ) / ( )i i iw x f x g x=



If  f has fatter tails than g, then the relative weights will be high on a handful of draws,

and the estimate will converge very slowly. In high dimension problems (SZ have 19),

it’s possible for the tails to be fat in only a few directions, so a scheme which seems to

work fine with 10,000 draws might finally run into difficulties if you go to 100,000.

The SZ model for the contemporaneous part is
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where the v processes are orthonormal. The first two equations are “identified”

(economically, not statistically) as money supply and money demand, respectively.

Statistical identification comes from requirement that v’s be uncorrelated.

1Au v A A A A −′ ′= ⇒ Σ = Ι ⇒ = Σ . The model is overidentified, it won't be the case that this

will hold exactly, but if we write out A A′ we get
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Multiply out the second row: the fifth and sixth columns produce 0. This leaves 19

conditions to solve for 19 free parameters, and the overidentifying test will just be testing

whether those two elements of the inverse are, in fact, zero. The restrictions eliminate

two conditions which might help pin down the difference between the first two equations.



Sims and Zha prefer the form of model given above where the model is normalized by

making the orthogonal shocks have unit variances. The more common normalization is to

peg one of the a coefficients in each row to one and allow the variances of the orthogonal

shocks to be free. If we adopt that form, we get the following contours for the marginal

joint density of the importance and the likelihood (smoothed on a 100x100 grid) of the

two key coefficients:
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Likelihood Function
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Likelihood/Importance
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This is the ratio of the likelihood to the importance function, that is, the weights. The

weights are much higher in the one area, and this is likely to be a bit conservative because

of the smoothing. It’s also clear from the likelihood that the “economic identification” of

the two equations is tenuous at best. A non-trivial part of the likelihood is outside the

northwest quadrant.

SZ never describe the procedure for doing importance sampling on the model with

standard normalization. With n=number of variables, p=number of regressors per VAR

equation, and T=number of data points, the marginal density for Σ  (using the Jeffrey’s

prior) ( 1) / 2n− +
Σ ) is

(1) ( ) / 2 1 ˆexp
2

T p T
trace

− − − Σ − Σ Σ 
 

 The model states that

(2) 1 1A A− − ′Σ = Λ



where Λ  is diagonal. SZ point out that this doesn’t not necessarily give an integrable

density, that is, we can’t necessarily use a flat prior on A and Λ . The prior which

suggests itself is proportional to

(3) δ−
Λ

Rewrite (1) as
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By inspection
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If we integrate over Λ , we’ll get an integrating constant proportional to

(6) ( )
( )

1
2ˆ

2

T p

iii

T
A A

δ− − + + 
  ′Σ 

 
∏

It can be shown that a sufficient condition for this to be integrable over A is that

3
2

nδ −
> , somewhat less stringent than the 1

2
nδ +

= given in SZ. (There are cases where

it’s integrable with a flat prior on Λ  as well.)

Because |AΛ  has a convenient distribution, the importance sampling can be confined

just to A. Given a value of δ , locate the posterior mode for A. Take the AN density. Now

there are two adjustments which can help the behavior of the importance sampling

procedure:

(a) Scale up the covariance matrix (slightly)

(b) Use a multivariate t rather than a Normal



Both of these work to fatten the tails. If the likelihood is not too ill-behaved, this will

likely produce a respectable yield of the MC process. This is the setup code:

compute delta=3.5
cvmodel(parmset=simszha,dfc=ncoef,pdf=delta,$
  dmatrix=marginalized,method=bfgs) vmat afrml
dec rect saxx

axbase is the maximizing vector of coefficients.

compute [vector] axbase=%parmspeek(simszha)

saxx is a factor of the (estimated) inverse Hessian at the final estimates. This gets scaled
slightly to fatten up the tails a bit.

compute saxx=1.2*%decomp(%xx)

scladjust is used to prevent overflows when computing the weight function

compute scladjust=%funcval

nu is the degrees of freedom for the multivariate Student used in drawing A's

compute nu=30.0

And this is the working code inside the loop:

Do a draw for the coefficients from a multivariate t density and “poke” it back into the
parmset so the AFRML can get the new values.

   compute grandom =nu/%rangamma(nu)
   compute au      =%ran(sqrt(grandom))
   compute %parmspoke(simszha,axbase+saxx*au)

Compute (log kernels of) the true marginal posterior density

   compute a       =afrml(1)
   compute dhat    =a*vmat*tr(a)
   compute ddiag   =%xdiag(dhat)
   compute pdensity=.5*(%nobs-ncoef)*log(%det(a*tr(a)))-$
    (.5*(%nobs-ncoef)+delta+1)*%sum(%log(ddiag))



and the importance function.

   compute idensity=-((nu+nfree)/2.0)*log(nu+%dot(au,au))

Compute the weight value by exp'ing the difference between the two densities, with scale
adjustment terms to prevent overflow.

   compute weight  =exp(pdensity-scladjust-idensity-$
    ((nu+nfree)/2.0)*log(nu))

Conditioned on A, make a draw for the D matrix

   ewise d(i)      =(%nobs/2.0)*$
       ddiag(i)/%rangamma(.5*(%nobs-ncoef)+delta+1)

Combine D and A to generate the draw for a factor of sigma.

   compute swish   =inv(a)*%diag(%sqrt(d))

The following are the “effective sample sizes” ( ( ) ( )2 2

i iw w∑ ∑ ) for 10000 draws of the

importance sampler for different settings for the degrees of freedom of the t and scale

factors for the (matrix square root of the) asymptotic variance of the estimators. (Draws

were done separately for each setting). Yields in the 20% range are fairly good for a

model that isn’t as well-behaved as we might like. For a smaller and more sharply

estimated model, we would expect results much better than this.

Normal 20 10 5 1
1.0 13 446 2881 1455 695
1.1 1067 660 1255 2071 1217
1.2 505 1633 2204 2201 633



Bernanke-Mihov

Bernanke and Mihov attempt to isolate the monetary policy shock in a six variable

model. This includes six variables: three macro variables representing the overall

economy (GDP or a proxy, deflator or a proxy and commodity price index) and three

representing the monetary sector: Federal Funds rate, total reserves and non-borrowed

reserves. The first step in the SVAR is to “sweep” out the contemporaneous effects of the

macroeconomic sector, thus assuming that none of the shocks originating in the monetary

sector have a contemporaneous effect on the macro variables. This can be done most

easily using the “%SWEEP” function or one of its relatives:

compute sweepvcv=%sweeptop(%sigma,NNONPOLICY)
compute [symm] moneyvcv=%xsubmat(sweepvcv,$
  NNONPOLICY+1,NVAR,NNONPOLICY+1,NVAR)

This isolates the 3x3 matrix of desired residual monetary sector shocks. The  authors then

propose a general class of SVAR models on the monetary variables.
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As written, this is underidentified by one parameter. The structure includes as restrictions

upon this a number of possible “reaction” functions for sv . All but one of these result in a

model which is overidentified by one.

This is done using the “A-B” form in CVMODEL.

dec frml[rect] ab phi
nonlin alpha beta phid phib
frml ab = ||1.0,0.0,alpha|1.0,-1.0,-beta|0.0,1.0,0.0||
frml phi = ||1.0,0.0,0.0|0.0,1.0,0.0|phid,phib,1.0||
*
disp 'JI (Just Identified)'



nonlin alpha=0 beta phid phib
compute phid=1.0,phib=-1.0,beta=0.0
cvmodel(pmethod=simplex,piters=10) moneyvcv ab phi

disp 'FFR Model'
nonlin alpha beta phid=1 phib=-1
cvmodel(pmethod=simplex,piters=10) moneyvcv ab phi
*
disp 'NBR Model'
nonlin alpha beta phid=0 phib=0
compute alpha=.03,beta=.014
cvmodel(pmethod=simplex,piters=100,factor=f) moneyvcv ab
phi
*
disp 'NBR/TR Model (Orthogonalized NBR)'
nonlin alpha=0 beta phid phib=0
cvmodel(pmethod=simplex,piters=10) moneyvcv ab phi
*
disp 'BR Model'
nonlin alpha beta phid=1 phib=alpha/beta
cvmodel(pmethod=simplex,piters=10) moneyvcv ab phi

The authors also estimate a Markov switching model for the just identified SVAR model.

A minor quibble: the initial step of running the lagged VAR and working off the residuals

isn’t really justified here, because the efficiency of equation by equation OLS depends

upon a covariance matrix fixed over the sample, which we won’t have here. However,

given that there are around 500 coefficients in the VAR, it’s a safe bet that it won’t be

feasible to allow them to vary between the states.

A somewhat more significant quibble is that they allow the three structural parameters to

vary between states, but not the variances. It’s highly unlikely that there could be an

interesting shift in the structure without the variances of the orthogonal shocks changing

as well. The restriction of fixed variances will be overwhelmingly rejected by the data.



The covariance matrix of the policy sector no longer forms sufficient statistics for the

residuals; we need the residuals transformed to sweep out the contemporaneous effects of

the other three. The rectangular block of sweepvcv in the rows for the policy variables

and columns for the nonpolicy has the -1 x the coefficients of the required

transformations. Since we’re supposed to subtract off anyway, you can just apply those

values directly:

dec vect[series] upolicy(NPOLICY) unon(NNONPOLICY)
do i=1,NNONPOLICY
   set unon(i) = u0(i)
end do i
do i=1,NPOLICY
   compute [vector] sweepco=%xsubmat(sweepvcv,$
        NNONPOLICY+i,NNONPOLICY+i,1,NNONPOLICY)
   set upolicy(i) date1(IPERIOD) date2(IPERIOD) =
        u0(NNONPOLICY+i)+%dot(sweepco,%xt(unon,t))
end do i

Since the variances won't concentrate out, we switch to an alternative form which takes

the u's to an identity matrix. The standard deviation scale factors will go into the "B" part

of the Au=Bv expression.

Note that the Markov switching procedures all use an ( 1)n xn−  representation for the free

parameters in the transition matrix, hence the dimensions of p.

dec rect p(1,2)
nonlin p beta phib_1 phid_1 d1_1 d2_1 d3_1 $
   phib_2 phid_2 d1_2 d2_2 d3_2
source c:\rats\600exam\markov.src
dec frml[rect] phi_1 phi_2
frml ab = ||1.0,0.0,0.0|1.0,-1.0,-beta|0.0,1.0,0.0||
frml phi_1 = $
||d1_1,0.0,0.0|0.0,d2_1,0.0|d1_1*phid_1,d2_1*phib_1,d3_1||
frml phi_2 = $
||d1_2,0.0,0.0|0.0,d2_2,0.0|d1_2*phid_2,d2_2*phib_2,d3_2||
*



The sigma matrices and determinants depend only upon the coefficients, and not data, so
we compute the (inverse of the) sigma matrix during the initialization, along with the
ergodic probabilities of the two states.

frml init = (pstar=%mcergodic(p)),$
            (siginv_1=%innerxx(inv(phi_1(1))*ab(1))),$
            (siginv_2=%innerxx(inv(phi_2(1))*ab(1))),$
            (det_1=log(abs(%det(siginv_1)))),$
            (det_2=log(abs(%det(siginv_2))))
*
function StateF time
type vector StateF
type integer time
*
local vector u
compute u=%xt(upolicy,time)
compute StateF=$
||1.0/sqrt(2*%pi)*exp(.5*det_1-.5*%qform(siginv_1,u)),$
  1.0/sqrt(2*%pi)*exp(.5*det_2-.5*%qform(siginv_2,u))||
end

compute p=||.5,.5||
compute phid_1=0.0,phib_1= 0.0,$
  d1_1=sqrt(moneyvcv(1,1)),d2_1=sqrt(moneyvcv(2,2)),$
  d3_1=sqrt(moneyvcv(3,3))
compute phid_2=1.0,phib_2=-1.0,$
  d1_2=d1_1,d2_2=d2_1,d3_2=d3_1
*
set phist = 0.0
frml logl = $
  f=StateF(t),pstar=%msupdate(f,%mcstate(p,pstar),fpt),$
  phist(t)=pstar(1),log(fpt)
maximize(start=init,trace,pmethod=simplex,piters=50,$
 method=bhhh,iters=400) logl date1(iperiod) date2(iperiod)
graph
# phist date1(iperiod) date2(iperiod)



Faust and Uhlig

Faust and Uhlig both eschew the development of a full structural VAR and instead see

what inference can be drawn by looking at individual shocks. The root behind this is the

following, part of which is implicit (though unstated) in both author’s results:

Proposition. If Σ  is an nxn  positive definite symmetric matrix, and x is a non-zero

1nx vector, then

a) there exists a factor of ′Σ = FF  where the first column of F is a scale multiple of x

b) there exists a factor of 1 1− − ′Σ = P P  where the first row of P is a scale multiple of ′x

Proof. For (a) factor ′Σ = SS  (any factor will do). Generate an orthonormal matrix U with

a scale multiple of 1−S x  as the first column. Then SU gives the desired factor. For (b),

generate an orthonormal matrix V with a scale of S'x  as the first column. SV is the

desired factor.

Forcing a column fixes the initial responses. Forcing a row in the inverse fixes as one of

the orthogonalized shocks a particular linear combination of the non-orthogonalized

innovations. For instance, in a two variable system, x={1,1} applied to (a) would mean

that the innovation being set would hit both variables equally in the first period. Applied

to (b) means that the innovation is the sum of the non-orthogonal innovations in the two

variables. These factorizations can be computed using the ForcedFactor procedure.

A well-known example of this is the Blanchard-Quah factorization. While BQ name the

two shocks as “demand” and “supply”, they’re actually demand and whatever shock is

required to complete an orthogonal factorization. If one were to apply the above



procedure (to the 2x2 case), if C(1)  is the long-run response matrix, the “demand” shock

is defined to be a solution to 0
(1)

*
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C x . In their 3x3 model, King, Plosser, Stock and

Watson define a shock which loads equally onto all three variables long-run. You can
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C x  for x to determine that.

Faust’s paper is based upon the following: given any chosen (orthonormal) factorization

of the covariance matrix, the fraction of variance of a variable at any horizon explained

by a linear combination α of the orthonormal shocks can be written as the quadratic

form hVα α′  where hV  is obtained from the IRF’s for the original factorization. Since we

still need this to define a unit variance shock, we need 1α α′ = . The approach is to solve

the problem

(7) max hVα
α α′  subject to 1α α′ =  and 0RC α ≥

where the final restrictions are on the impulse responses (sign restrictions, signs of

changes between periods). In other applications, simply looking at the solution to this

without those sign restrictions might be interesting; in Faust’s case, since he is trying to

look at the more minor effect of (potential) monetary policy shocks, the restrictions are

critical.

The hv matrix can be obtained in RATS using the following (this is getting the 108 step

horizon variance decomp for GDP):

Compute impulse response function for any decomposition of sigma

impulse(responses=irf,model=bmmodel,$
  decomp=%decomp(%sigma),noprint) * 108



Pull out responses of GDP

dec vect[series] gdpresp(nvar)
do i=1,nvar
   set gdpresp(i) = irf(1,i)
end do i

The CMOM of this will give the quadratic form matrix which will give the variance from
the weights on the orthogonal components. The forecast error variance is the sum of the
diagonal elements. Scale the matrix by that, so the matrix sums to one on the diagonal.

cmom
# gdpresp
compute vh=%cmom/%sum(%xdiag(%cmom))

The solution to (7) without the further constraints is just the eigenvector (normalized to

unit length) for the maximal eigenvalue. Since that gives a linear combination of already

orthonormalized shocks, to get the original impulse vector, we need to premultiply that

by that first factor:

eigen vh eigval eigvect
compute x=%decomp(%sigma)*%xcol(eigvect,1)

The following is an example of imposing a restriction on the impulse responses: here that

at the 4th step, the response of interest rates (variable 6) is non-negative and the response

of prices (variable 2) is non-positive. This is done with FIND with restrictions. Faust

solves a set of restricted eigenvalue problems assuming (in turn) each subset of

constraints is binding.

compute [rect] step4 = %xt(irf,4)
compute rcond = %xrow(step4,6)
compute pcond = %xrow(step4,2)
dec vect alpha(6)
nonlin alpha %normsqr(alpha)==1 %dot(rcond,alpha)>=0.0 $
 %dot(pcond,alpha)<=0.0
compute alpha=%xcol(eigvect,1)
find(method=bfgs,trace) max %qform(vh,alpha)



end find
compute x=%decomp(%sigma)*alpha
impulse(shock=x,model=bmmodel) * 108


